HomeRobotic Database - Single Infrastructure | TERRINet

The structure

The Robotics (ROB) Scientific Department conducts research along several themes involving perception, decision-making, motion, action, communication and interaction between the robot and its environment: the other robots, humans and ambient intelligence systems. Research is conducted by ROB along four strategic streams: aerial and terrestrial field robotics, interactive and cognitive robotics, human and anthropomorphic motion, and algorithms for molecular motion. These research activities involve also collaborative investigations with research on living systems such as neuroscience, cognitive sciences and biochemistry.One main feature of robotics research at LAAS concerns the robot itself as an object of study i.e. an artificial entity endowed with integrated sensori-motor and cognitive abilities and acting in an open environment. 

Research themes:
  • Environment perception and modeling,
  • Navigation, localization, motion planning and control,
  • Natural, artificial and virtual motion
  • Manipulation planning and control
  • Autonomous decision making, temporal planning, learning
  • Control architectures, embedded systems, robustness and fault tolerance
  • Human-robot multi-modal and decisional interaction
  • Multi-robot cooperation

Available platforms
Image Aerial Robots in a flight arena

Aerial Robots in a flight arena

Several models of flying robots, as quadrotors and hexarotors aerial robots, in a delimited flight arena of 6mx4mx5m (l,w,h) enclosed by a protective net. The ground is covered by protective mattresses. The arena is equipped with a motion capture system.

Detailed Information:

Image Domotic House

Domotic House

Large experimental space reproducing the scenery of an apartment with an open roof. The environment is supplied with furniture amidst which various robots can navigate and execute daily tasks. The apartment is equipped with various sensors including a motion capture system for studying and experimenting human-robot interaction scenarios.

Detailed Information:

Image Kawada Robotics HRP-2

Kawada Robotics HRP-2

Two human size humanoid robots in a fully equipped experimental room. LAAS has a long time experience in humanoid robot motion planning and control. After having demonstrated whole-body motion generation capabilities on HRP-2, LAAS is now developing new algorithms to enable physical interaction of humanoid robots with their environment and with humans. The new robot robot Pyrène constructed by Pal Robotics based on the experience of LAAS is powerful and designed to be torque controlled.

Detailed Information:

Image PAL Robotics Pyrène

PAL Robotics Pyrène

Two human size humanoid robots in a fully equipped experimental room. LAAS has a long time experience in humanoid robot motion planning and control. After having demonstrated whole-body motion generation capabilities on HRP-2, LAAS is now developing new algorithms to enable physical interaction of humanoid robots with their environment and with humans. The new robot robot Pyrène constructed by Pal Robotics based on the experience of LAAS is powerful and designed to be torque controlled.

Detailed Information:

Image Indoor robots

Indoor robots

Several models of indoor robot for navigation or manipulation equiped with specific sensors and motor capabilities.

Detailed Information:

Image Motion Capture Facilities

Motion Capture Facilities

Large experimental room equipped with an optoelectronic Motion Capture System to compute the position of reflective markers, force plates embedded in the floor to measure ground reaction forces, 6-axis force sensors to measure additional force contacts, wireless EMG to measure the activity of muscles. The system is provided with a processing software to reconstruct the whole-body dynamics and identify key elements of the musculoskeletal activity.

Detailed Information:

Image Outdoor robots

Outdoor robots

Three rover robots designed and equiped for outdoor navigation – Two robots RMP 400 and 440 – One reobot Sterela

Detailed Information:

TERRINet OFFICIAL STATEMENT

Coronavirus pandemic

Dear TERRINet applicants and future users,

we sincerely hope that you are staying safe in these challenging times that we are facing at the moment. The current emergency due to the COVID-19 pandemic has deeply changed our lives. The recent and progressive lock-down forced us to reorganize our working routines in smart working modalities and to shut down the TERRINet infrastructures. Therefore, we regret to inform you that Trans-National Access has been suspended until further notice.

However, we would like to reassure you that we will keep evaluating the proposals submitted for Trans-National Access regularly. Indeed, despite access cannot be allowed for a while, the selected users will be queued and access will take over gradually as soon as the situation will allow it. We also inform you that a special application mechanism has been settled in TERRINet to mitigate the delays that will occur due to the COVID-19.

The Open Call no. 4 is currently open: we are accepting proposals under the new mechanism called "first come, first served". Proposals are directly forwarded to the evaluation panel as soon as they are submitted. Proposals submitted closer to the deadline will be dispatched after that. The deadline for the Open Call n.4 will be on May 31, 2020.

Do not hesitate! Get this unique opportunity to be granted with fully-covered access (including travel and accommodation costs) to 15 leading European robotics labs and 100+ best robotic platforms and to get in touch with leading robotic experts. 

For any additional questions, please, contact us at info@terrinet.eu

 Let's take this time of the world calming down to plan our future. 

Stay safe.  

TERRINet team